Dynamic studies of H-Ras•GTPγS interactions with nucleotide exchange factor Sos reveal a transient ternary complex formation in solution

نویسندگان

  • Uybach Vo
  • Navratna Vajpai
  • Kevin J. Embrey
  • Alexander P. Golovanov
چکیده

The cycling between GDP- and GTP- bound forms of the Ras protein is partly regulated by the binding of Sos. The structural/dynamic behavior of the complex formed between activated Sos and Ras at the point of the functional cycle where the nucleotide exchange is completed has not been described to date. Here we show that solution NMR spectra of H-Ras∙GTPγS mixed with a functional fragment of Sos (Sos(Cat)) at a 2:1 ratio are consistent with the formation of a rather dynamic assembly. H-Ras∙GTPγS binding was in fast exchange on the NMR timescale and retained a significant degree of molecular tumbling independent of Sos(Cat), while Sos(Cat) also tumbled largely independently of H-Ras. Estimates of apparent molecular weight from both NMR data and SEC-MALS revealed that, at most, only one H-Ras∙GTPγS molecule appears stably bound to Sos. The weak transient interaction between Sos and the second H-Ras∙GTPγS may provide a necessary mechanism for complex dissociation upon the completion of the native GDP → GTP exchange reaction, but also explains measurable GTP → GTP exchange activity of Sos routinely observed in in vitro assays that use fluorescently-labelled analogs of GTP. Overall, the data presents the first dynamic snapshot of Ras functional cycle as controlled by Sos.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Evidence for Feedback Activation by Ras·GTP of the Ras-Specific Nucleotide Exchange Factor SOS

Growth factor receptors activate Ras by recruiting the nucleotide exchange factor son of sevenless (SOS) to the cell membrane, thereby triggering the production of GTP-loaded Ras. Crystallographic analyses of Ras bound to the catalytic module of SOS have led to the unexpected discovery of a highly conserved Ras binding site on SOS that is located distal to the active site and is specific for Ra...

متن کامل

Kinetic analysis by fluorescence of the interaction between Ras and the catalytic domain of the guanine nucleotide exchange factor Cdc25Mm.

Guanine nucleotide exchange factors (GEFs) activate Ras proteins by stimulating the exchange of GTP for GDP in a multistep mechanism which involves binary and ternary complexes between Ras, guanine nucleotide, and GEF. We present fluorescence measurements to define the kinetic constants that characterize the interactions between Ras, GEF, and nucleotides, similar to the characterization of the ...

متن کامل

Son of Sevenless Directly Links the Robo Receptor to Rac Activation to Control Axon Repulsion at the Midline

Son of sevenless (Sos) is a dual specificity guanine nucleotide exchange factor (GEF) that regulates both Ras and Rho family GTPases and thus is uniquely poised to integrate signals that affect both gene expression and cytoskeletal reorganization. Here, using genetics, biochemistry, and cell biology, we demonstrate that Sos is recruited to the plasma membrane, where it forms a ternary complex w...

متن کامل

Structure-based mutagenesis reveals distinct functions for Ras switch 1 and switch 2 in Sos-catalyzed guanine nucleotide exchange.

Ras GTPases function as binary switches in signaling pathways controlling cell growth and differentiation. The guanine nucleotide exchange factor Sos mediates the activation of Ras in response to extracellular signals. We have previously solved the crystal structure of nucleotide-free Ras in complex with the catalytic domain of Sos (Boriack-Sjodin, P. A., Margarit, S. M., Bar-Sagi, D., and Kuri...

متن کامل

Allosteric gating of Son of sevenless activity by the histone domain.

Regulated activation of Ras by receptor tyrosine kinases (RTK) constitutes a key transduction step in signaling processes that control an array of fundamental cellular functions including proliferation, differentiation, and survival. The principle mechanism by which Ras is activated down stream of RTKs involves the stimulation of guanine nucleotide exchange by the ubiquitous guanine nucleotide ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016